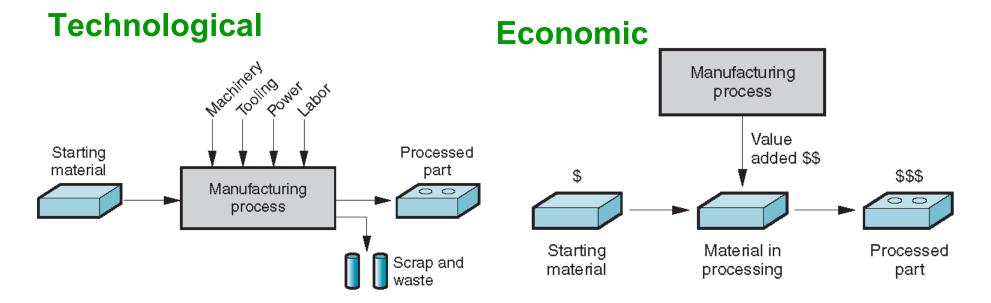


TA202A: Introduction to Manufacturing Processes

N. Sinha Department of Mechanical Engineering IIT Kanpur

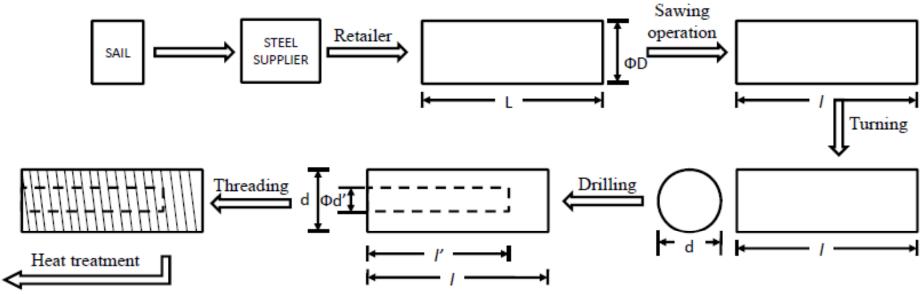

Email: nsinha@iitk.ac.in

Manufacturing

Derived from two latin word *manus* (hand) and *factus* (make); the combination means "made by hand"

Present perspective: involves making products from raw material by various processes, machinery and operations following a well organized plan for each activity required.

Manufacturing Activity Should Be Responsive To..


- Meet design requirement (Diameter, length, surface finish, tolerances, etc.).
- Most economic method to minimize cost
- From design to assembly: the quality should be built into the product at each stage.
- Production method should be flexible : meet varying demand (quantity, types, delivery date, etc.).
- ➤ MANUFACTURING ORGANIZATION: strive for higher productivity and optimum use of all its resources → material, men, machines, money (4M)

DESIGN AND MANUFACTURING OF A PRODUCT

- 1. YOU CAN NOT MAKE IF YOU CAN NOT MEASURE
- 2. YOU CAN NOT DESIGN IF YOU CAN NOT MANUFACTURE
- Important issues related to Design and MANUFACTURING.
- Ex: Paper clip (clip shape : square or round, wire size: dia, length)
- Functional requirement: to hold papers with sufficient clamping force.
- Material issues:
- Type of material. Stiffness (deflection/ force) & strength (yield stress: stress to cause permanent deformation. If it is too strong, a lot of force will be required but if it is too weak, it may not work in holding the papers etc).
- Aesthetic issues:
- Style, appearance and surface finish of the clip. Corrosion resistance is also required (subjected to moisture and other environmental attack).
- Production issues:
- Quantity to be produced: tens, hundreds,, millions
- Can the wire be bent without cracking/ breaking?
- Smooth edge or burr (undesirable): paper finger

IN CASE OF METALLIC PARTS, STEPS FOLLOWED

ORE \rightarrow EXTRACT METAL \rightarrow MELT IN A FURNACE \rightarrow CASTING \rightarrow CUT IN PROPER SIZES (LOG) \rightarrow TRANSPORT TO TRADER

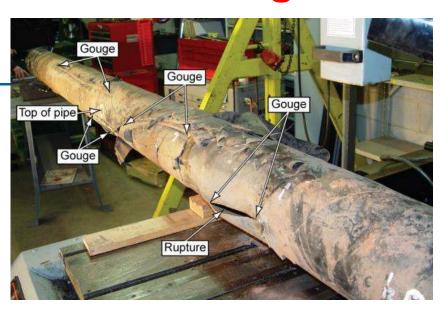
EXPLAIN THE ABOVE STEPS WITH MACHINING CONDITIONS AND TOOLS' DETAILS, IT WILL BE CALLED A PROCESS PLAN.

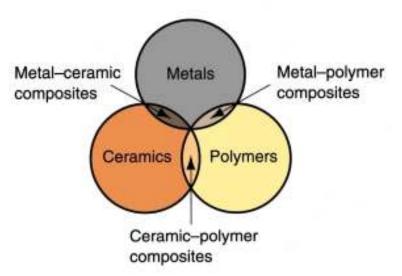
MACHINING CONDITIONS: f, d, v. (cutting fluid / dry cutting)
Tool's Details: Tool material, tool angles.

What has gone into?

- Value addition
- Conversion of raw material into useful product → Manufacturing by performing different operation

Final product: Weight 3 kg, Cost - Rs 500/. RAW MATERIAL COST Rs. 60/ PER Kg


Manufacturing contd.

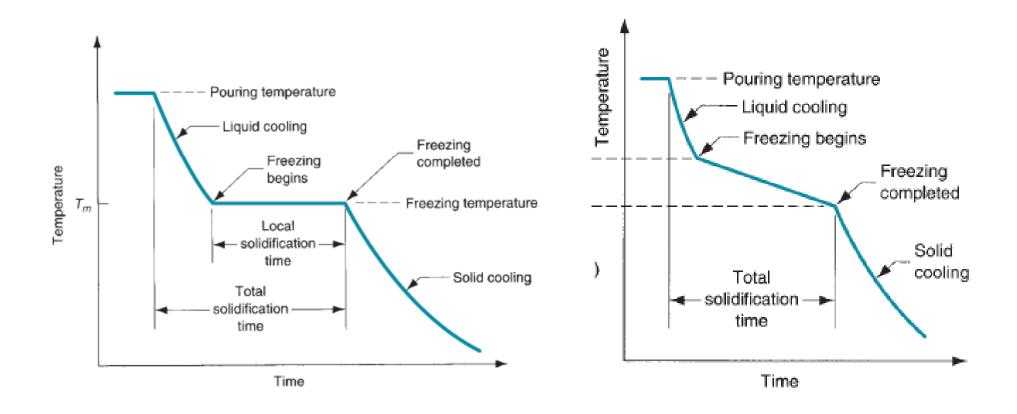

Hence a designer should be well acquainted with

- ✓ Materials and their properties
- ✓ Manufacturing processes and capabilities
 - Related manufacturing machines and equipments
 - Assembly and inspection procedures
- ✓ Finishing and surface treatment processes
- ✓ Heat treatment or bulk property enhancing processes

Materials in Manufacturing

- Their chemistries are different, and their mechanical and physical properties are different.
- These differences affect the manufacturing processes that can be used to produce products from them.

- Usually alloys, which are composed of two or more elements, at least one of which is metallic. Two basic groups:
 - 1. Ferrous metals based on iron, comprises about 75% of metal tonnage in the world:
 - Steel and cast iron
 - 2. Nonferrous metals all other metallic elements and their alloys:
 - Aluminum, copper, nickel, silver, tin, etc.



Charging a basic oxygen furnace in steelmaking: molten pig iron is poured. Temperatures are around 1650C (3000F).

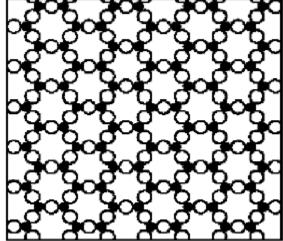
Source: 2010 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 4/e

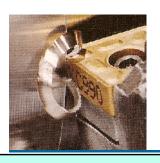
Source: 2010 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 4/e

Applications

- Electrical wiring
- Structures: buildings, bridges, etc.
- Automobiles: body, chassis, springs, engine block, etc.
- Airplanes: engine components, fuselage, landing gear assembly, etc.
- Trains: rails, engine components, body, wheels
- Machine tools: drill bits, hammers, screwdrivers, saw blades, etc.
- Magnets

Examples


- Pure metal elements (Cu, Fe, Zn, Ag, etc.)
- Alloys (Cu-Sn=bronze, Cu-Zn=brass, Fe-C=steel, Pb-Sn=solder)
- Intermetallic compounds (e.g. Ni₃AI)



2. Ceramics

Compounds containing metallic (or semi-metallic) and nonmetallic elements.

- Typical nonmetallic elements are oxygen, nitrogen, and carbon
- For processing, ceramics divide into:
 - 1. Crystalline ceramics includes:
 - Traditional ceramics, such as clay, and modern ceramics, such as alumina (Al₂O₃)
 - Glasses mostly based on silica (SiO₂)

2. Ceramics

Distinguishing features

- Composed of a mixture of metal and nonmetal atoms
- Lower density than most metals
- Stronger than metals
- Low resistance to fracture: low toughness or brittle
- Low ductility or malleability
- High melting point
- Poor conductors of electricity and heat
- Except for glasses, atoms are regularly arranged
- While metals react readily with chemicals in the environment and have low application temperatures in many cases, ceramics do not suffer from these drawbacks.
- Ceramics have high-resistance to environment as they are essentially metals that have already reacted with the environment, e.g. Alumina (Al_2O_3) and Silica $(SiO_2, Quartz)$.
- Ceramics are heat resistant. Ceramics form both crystalline and non-crystalline phases because they can be cooled rapidly from the molten state to form glassy materials.

2. Ceramics

Applications

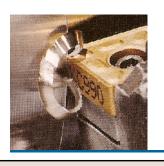
- Electrical insulators
- Abrasives
- Thermal insulation and coatings
- Windows, television screens, optical fibers
- Corrosion resistant applications
- Biocompatible coatings (fusion to bone)
- Magnetic materials (audio/video tapes, hard disks, etc.)
- Night-vision

Examples

- Simple oxides (SiO₂, Al₂O₃, Fe₂O₃, MgO)
- Mixed-metal oxides (SrTiO₃, MgAl₂O₄, YBa₂Cu₃O_{7-x})
- Nitrides (Si₃N₄, AIN, GaN, BN, and TiN, which are used for hard coatings)

3. Polymers

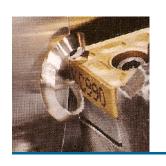
- Compound formed of repeating structural units called *mers*, whose atoms share electrons to form very large molecules
- > Polymer usually consists of carbon plus one or more elements such as hydrogen and nitrogen


Polyethylene: (the *mer* unit is C_2H_4) Polypropylene: (the *mer* unit is C_3H_6)

3. Polymers

Distinguishing features

- Composed primarily of C and H (hydrocarbons).
- Low melting temperature.
- Most are poor conductors of electricity and heat.
- Many have high plasticity.
- A few have good elasticity.
- Some are transparent, some are opaque.
- Polymers are attractive because they are usually lightweight and inexpensive to make, and usually very easy to process, either in molds, as sheets, or as coatings
- Most are very resistant to the environment
- They are poor conductors of heat and electricity, and tend to be easy to bend, which makes them very useful as insulation for electrical wires.


3. Polymers

Three categories:

- Thermoplastic polymers can be subjected to multiple heating and cooling cycles without substantially altering molecular structure
- Thermosetting polymers molecules chemically transform into a rigid structure – cannot reheat
- 3. Elastomers shows significant elastic behavior

Applications and Examples

Adhesives and glues, Containers, Moldable products (computer casings, telephone handsets, disposable razors), Clothing and upholstery material (vinyls, polyesters, nylon), Water-resistant coatings (latex), Biodegradable products (corn-starch packing "peanuts"), Biomaterials (organic/inorganic intefaces), Liquid crystals, Low-friction materials (teflon), Synthetic oils and greases, Gaskets and O-rings (rubber), Soaps and surfactants

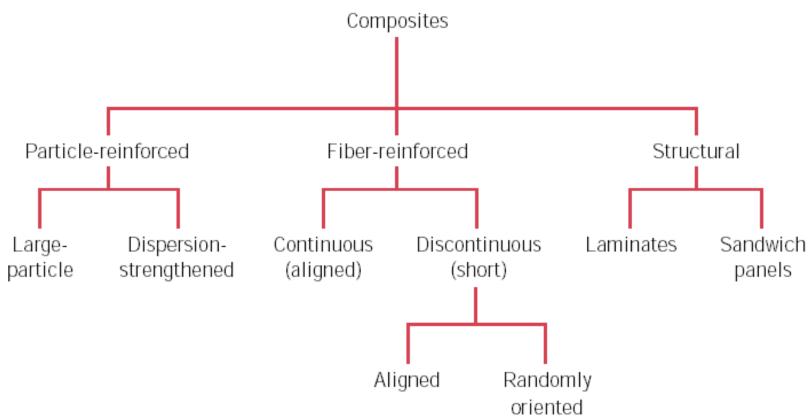
Material consisting of two or more phases that are processed separately and then bonded together to achieve properties superior to its constituents

- Phase homogeneous mass of material, such as grains of identical unit cell structure in a solid metal
- Usual structure consists of particles or fibers of one phase mixed in a second phase
- Properties depend on components, physical shapes of components, and the way they are combined to form the final material

In two material system, there are two phases: Primary phase & Secondary phase.

- ☐ The primary phase forms the matrix within which the secondary phase is imbedded
- □The imbedded phase is also known as dispersed phase or reinforcing phase

Matrix phase: The continuous phase


Purpose is to

- Transfer stress to other phases
- Protect phases from environment
- Classification: MMC, CMC, PMC

Dispersed phase

- Purpose is to enhance matrix properties
- Classification: Fiber (Diameter 0.0025 to 0.13mm), Particle (25 to 300µm), flake (two dimensional particles, size: 0.01 to 1mm)

Distinguishing features

- Composed of two or more different materials (e.g., metal/ceramic, polymer/polymer, etc.)
- Properties depend on amount and distribution of each type of material
- Collective properties more desirable than possible with any individual material

Applications

- Sports equipment (golf club shafts, tennis rackets, bicycle frames)
- Aerospace materials
- Thermal insulation
- Concrete
- "Smart" materials (sensing and responding)
- Brake materials

Examples

Fiberglass (glass fibers in a polymer); space shuttle heat shields (interwoven ceramic fibers); paints (ceramic particles in latex); tank armor (ceramic particles in metal)

Advantages

- Composites can have a unique property (e.g. Specific strength, specific modulus, improved impact resistance) that is significantly higher than their metal, polymer, and ceramic counterparts.
- Composites can be fabricated to a final product from raw materials eliminating many secondary operations such as machining, shaping, joining etc. (Reduce structural weakness and processing costs).
- Composites can be tailored to have both high strengths and high strains.

Disadvantages

- The costs of the materials are generally higher.
- The nature and the amount of reinforcing elements and matrix will limit the usage of that composite.
- Some environmental concerns (e.g. Solvents, chemical fumes, airborne fibers, etc.) can be involved during the processing of composites.

Shape Memory Materials

DEFINITION:

Shape Memory Materials (SMM) are those materials which, after being deformed PLASTICALLY (i.e., PERMANENTLY) at the room temperature into various shapes, return to their original shapes upon heating

EXAMPLES:

Typical Shape Memory Alloys are

- □55% Ni-45%Ti
- □ Copper-Aluminum-Nickel
- □ Copper-Zinc-Aluminum
- ☐ Iron-Manganese-Silicon

Shape Memory Materials

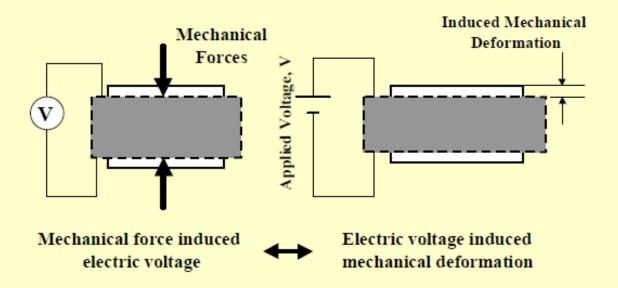
Shape Memory Materials

CHARACTERISTICS:

☐ SMM have good ductility,	good corrosion resistance,
high electrical conductivity	

☐ Behavior of SMM can also be *reversible*, i.e., shape can switch back and forth upon heating

APPLICATIONS:


Can be used

- ☐ To generate motion and/or force in temperaturesensitive actuators
- ☐ Eyeglass frames, connectors, clamps and fasteners

Piezoelectric Materials

 Piezoelectric crystals are solid ceramic compounds that produce piezoelectric effects:

- Natural piezoelectric crystals are: quartz, tourmaline and sodium potassium tartrate.
- Synthesized crystals are: Rochelle salt, barium titanate and lead zirconate.

Piezoelectricity

Biomaterials

A biomaterial can be defined as any substance (other than a drug) or combination of substances synthetic or natural in origin, which can be used for any period of time, as a whole or as a part of a system which treats, augments, or replaces any tissue, organ or function of the body.

Theoretically, any material can be a biomaterial as long as it serves the stated medical and surgical purposes.

Example of Biomaterial

Metals	Ceramics	Polymers
316L stainless steel	Alumina	Ultra high molecular weight
Co-Cr Alloys	Zirconia	polyethylene
Titanium	Carbon	Polyurethane
Ti6Al4V	Hydroxyapatite	

Biomaterials

Orthopaedic Applications

- Metallic materials are normally used for load bearing members such as pins and plates and femoral stems etc.
- Ceramics such as alumina and zirconia are used for wear applications in joint replacements.
- Polymers such as ultra high molecular weight polyethylene are used as articulating surfaces against ceramic components in joint replacements.

Dental Applications

- Metallic biomaterials have been used as pins for anchoring tooth implants and as parts of orthodontic devices.
- Ceramics have found uses as tooth implants including alumina and dental porcelains.
- Polymers, have are also orthodontic devices such as plates and dentures.

Biomaterials

Cardiovascular Applications

• Many different biomaterials are used in cardiovascular applications depending on the specific application and the design. For instance, carbon in heart valves and polyurethanes for pacemaker leads.

Cosmetic Surgery

Materials such as silicones have been used in cosmetic surgery.